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Abstract

Sulfinimine-derived a-amino 1,3-dithianes and a-amino carbonyl chiral building blocks, are utilized in asymmetric syntheses of
(+)-(tetrahydrofuran-2-yl)glycine and the 2,3-disubstituted piperidine (+)-L-733,060.
� 2007 Elsevier Ltd. All rights reserved.
Enantiomerically pure a-amino aldehydes and ketones,
generally prepared from a-amino acids, are widely used
chiral building blocks for asymmetric synthesis.1 However,
a-amino carbonyl compounds are notoriously unstable and
rapidly epimerize and self-condense even when suitably N-
protected. Many of these problems can be avoided by using
N-sulfinyl a-amino 1,3-dithianes 1, new sulfinimine-derived
chiral building blocks for a-amino aldehyde, and ketone
synthesis (Scheme 1).2,3 These building blocks are readily
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Scheme 1.
prepared in high diastereomeric purity by addition of
2-lithio-1,3-dithianes to sulfinimines.4 Acid hydrolysis
affords the enantiomerically pure free amine, leaving the
carbonyl group protected, resulting in unique opportunities
for functional group manipulation. We employed these a-
amino 1,3-dithianes in highly diastereoselective asymmetric
syntheses of functionalized prolines including (�)-3-
hydroxy-3-methyl proline (2)2 and (�)-2,3-trans-3,4-cis-
dihydroxyproline (3).3 As an extension of this methodo-
logy, we describe the concise asymmetric synthesis of the
2,3-disubstituted piperidine (2S,3S)-(+)-L-733,060 (4) and
the unnatural constrained a-amino acid (+)-(2R,20S)-(+)-
2-(tetrahydrofuran-2-yl)glycine (THFG 5) from a common
intermediate.

The key strategy employed in our synthesis of hydroxy
prolines (�)-2 and (�)-3 was the cyclization of a 2-
hydroxyethyl moiety (R0) in 1 to form the pyrrolidine ring.
Cyclization of a 3-hydroxypropyl group (R0) in 1 would
produce a piperidine ring. Addition of 2-lithium-1,3-dithi-
ane 75 to (S)-(+)-N-(benzylidene)-p-toluenesulfinamide
(6)6 gave N-sulfinyl a-amino 1,3-dithiane (SS,S)-(+)-8 in
94% de and 81% yield of the major diastereoisomer
(Scheme 2). Hydrolysis of (+)-8 with 1,3-dibromo-5,5-
dimethylhydantoin (9) in aqueous acetone not only hydro-
lyzes the thioketal group, but also oxidizes the N-sulfinyl
group to the N-tosyl protecting group affording (S)-(�)-
10 in 73% yield for the one pot sequence. Reduction
of the amino ketone with NaBH4 gives the expected syn
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alcohol (1S,2S)-(+)-11 (dr = 10:1) in 87% yield of the
major diastereoisomer. Selective tosylation of the primary
alcohol in (+)-12 was readily accomplished with TsCl/pyr-
idine affording (1S,2S)-(+)-13 in 87% yield.

Next, treatment of amino alcohol (+)-13 with Et3N gave
the expected, kinetically favored, furan (+)-14 in 83% yield
(Scheme 3). Oxidation of the phenyl group in (+)-14 with
RuCl3/NaIO4 gave the carboxylic acid 15, which was
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isolated as the methyl ester with TMSCHN2 affording
(2R,20S)-(+)-5 in 54% for the two steps.7 Conformationally
constrained unnatural amino acids such as (+)-5 are in
demand for the synthesis of constrained peptide surrogates,
which have increased potency, stability, bioavailability,
and selectivity.

To prepare a piperidine from (+)-11 required protection
of the 2-hydroxy group as the OTBS ether. Treatment of
(+)-16 with p-TSA at 0 �C for less than 30 min made it pos-
sible to selectively deprotect the primary OTBS, affording
(+)-17 in 82% yield (Scheme 4). With TsCl/Et3N, (+)-17

gave piperidine (+)-18 in 88% yield and the hydroxy
piperidine (+)-19 was obtained in 90% yield using TBAF.
Etherification of the hydroxy group with NaH and 3,5-
bis(trifluoromethyl)benzyl bromide gave (2S,3S)-(+)-20.
Finally, N-tosyl deprotection with Na/liq. NH3 at �78 �C
afforded (2S,3S)-(+)-L-733,060 (4) in 78% yield (Scheme
4).8,9 (+)-L-733,060 (4) is a potent neurokinin substance
P receptor antagonist, which exhibits strong antiemetic
activity.10

In summary, the utility of a-amino 1,3-dithianes as chi-
ral building blocks for the asymmetric synthesis of hetero-
cycles has been demonstrated by the preparation of amino
furan (+)-THFG-5 and 2,3-disubstituted piperidine (+)-L-
733,060 (4) from common amino diol intermediate (+)-
11.12 In particular, our synthesis of (+)-4 in 11 steps under
nine operations (18% overall yield) from sulfinimine (+)-6
is one of the most concise to date. 2,3-Disubstituted piper-
idines are structural units found in natural products and
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(82%) Ph

NH
Ts

OTBS

(1S,2S)-(+)-17

TsCl, Et3N

(82%) N
Ts

OTBS

Ph

(2S,3S)-(+)-18

TBAF/THF

(90%) N
Ts

OH

Ph

(2S,3S)-(+)-19

NaH (81%)

Br

CF3

F3C

N
Ts

O

Ph

(2S,3S)-(+)-20

CF3

CF3

Na/liq. NH3

-78 oC (78%)

(+)-L-733,060 4

OH

Scheme 4.



872 F. A. Davis, T. Ramachandar / Tetrahedron Letters 49 (2008) 870–872
several drug candidates,11 and the structural diversity of
available sulfinimine-derived a-amino 1,3-dithianes make
this protocol well suited for enantiomer and analog
synthesis.10
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